Tuesday, August 20, 2024

 Chronological Development of Fragmentation Analysis Methods



Over the decades, fragmentation analysis models have evolved significantly, driven by technological advancements and the growing need for more accurate and efficient methods. This article traces the chronological development of fragmentation analysis models, highlighting key milestones that have shaped the field.

1. Early Theoretical Models (1950s-1970s)

The foundation of fragmentation analysis began with theoretical models aimed at predicting rock breakage based on empirical observations and basic physics.

1950s: Early models focused on understanding the mechanics of rock breakage during blasting. Researchers like L. M. Griffith introduced the concept of rock fracture mechanics, which provided a theoretical basis for predicting crack propagation in rock under stress.

1963: C.F. Konya and E.J. Walter developed the first significant mathematical model, which related explosive energy to the size distribution of blasted rock. This model, known as the Kuz-Ram model (named after the Kuznetsov equation and Rosin-Rammler distribution), laid the groundwork for future fragmentation analysis.

1970s: Further refinements were made to the Kuz-Ram model, with adjustments to account for factors such as rock type, explosive properties, and blast geometry. However, these early models were limited by the lack of sophisticated computational tools and relied heavily on empirical data.


2. Introduction of Image Analysis Techniques (1980s-1990s)

The advent of digital image processing in the 1980s marked a significant leap forward in fragmentation analysis.

1986: The first commercial software for image-based fragmentation analysis, WipFrag, was introduced by WipWare Inc. WipFrag utilized digital images of blast muck piles to analyze particle size distribution, offering a more accurate and practical alternative to manual sieving methods.

1990s: The 1990s saw widespread adoption of image analysis software in the mining industry. These tools allowed for real-time fragmentation analysis, enabling operators to assess blast performance on-site and make immediate adjustments to subsequent blasts.

3. Advances in Computational Modeling (2000s)

The turn of the millennium brought further advancements in computational power and modeling techniques, leading to more sophisticated fragmentation analysis models.

4. Integration of Artificial Intelligence and Machine Learning (2010s-Present)

The most recent developments in fragmentation analysis have been driven by the integration of artificial intelligence (AI) and machine learning (ML) techniques.


WipWare's pioneering image analysis software revolutionized blasting assessment by offering real-time, accurate fragmentation analysis, reducing reliance on manual methods, and enabling immediate adjustments to improve blast outcomes.


Visit wipware.com now to learn about the development from 1986 till date

Friday, November 17, 2023

ROCK AND MINING REVIEW

 The Earth consist of various sphere including be the hydrosphere (water), lithosphere (land), the atmosphere (space region), the hemisphere and many other sphere. The most valuable among them all that supports the manufacturing and innovation is the lithosphere.
The land host in place millions of Mineral components. Mineral as we know it to be is a solid inorganic  substance, generally formed by inorganic process with crystalize structure and consistent of definite chemical composition. Almost everything around us now consist of one or more mineral. How is minerals formed?
The journey of minerals begin from rock formation, to understand the origination of mineral we have to know a bit more about rock and their formation process. Because, rock is an accommodation of various mineral, and the breaking down of this rock through weathering process results in the detachment of minerals into separate grains.
Teaching the formation of rock in this slide will assist us in learning about how the geological formation of the subject matter "mineral" comes in place.
Generally, the Earth is consisting of three Layers, the core, the mantle and the crust.
The core is the innermost part of the Earth and the mantle is the solid and the heaviest part of the Earth consisting of liquified rock called magma. Magma is the rock which had been transformed into liquid state understand high temperature and hydrothermal pressure. The journey of all the solid rock we see around us begins with the liquid state right there in the mantle.
As time goes on, the mantle compartment holding the magma also known as magma chamber undergo metaphorical relief which bring about the migration of the magma through available active fracture (cracks) in the chamber. The chamber under high pressure and temperature with the state of it flexibility support the continuous upflow of the rock magma  towards the surface. During this migration, the magma (liquid rock) consist of various mineral components dissolved in it. The solidification of the magma depends strictly on the reduction of temperature and pressure. As the magma migrates from higher temperature region to lower temperature region it viscosity increases.
 Viscosity for the sake of those who are hearing that for the first time is the degree of ease migration of a liquid. It also refer to the ability of liquid layers to slide on each other under an applied shear stress which support the liquid migration. The change in phase process Begin as the temperature and pressure reduces. The rock at it liquid state moves towards the Earth surface through existing fractures as I have explained in the previous slide. The result of the outpouring of liquid magma to the surface is called volcano. The solidification of the molten magma (or lava) at the surface support one type of rock formation called *Igneous Rock*
Igneous Rock is know to be fire rock according to the Greek translation of Igneo. This rock is formed when the magma cools and solidifies. The cooling process produces two Major types of Igneous Rock which depends on the rate of cooling. The volcanic and the plutonic Igneous Rock. The words sound strange? Let us learn about them together. Remember I said the igneous rock is just one of the type of rock and is the primary source of all rock on Earth surface and subsurface. Also, I mentioned that the cooling process of the hot magma (rock in liquid state) depends on the surrounding temperature and pressure condition. The migration of the magma sometimes stopped at the subsurface without getting to the surface, at this stage the rock formation from such is called *The plutonic Igneous Rock* they experience slow cooling process due to the high temperature nature. The implication of the slow cooling is that, the elemental components in the magma have sufficient time to react with each other and to form various mineral components. In the cooling process also, the Mineral components have the time to conglumerate into ore.
 Plutonic rock are known to have coarse grains (phaneritic texture) example of this rock type is Granitic rock (Granite) and pegmatite.
Another rock type is the volcanic Igneous Rock, which unlike plutonic cools rapidly. They are as a result of the surface flow of magma cooling rapidly under lower temperature and pressure. Such rock type is characterize by fine grains. Example is obsidian and pumice.
Understanding the origination of Igneous Rock as the primary source of rock, other two types of rock, the metamorphic rock and the sedimentary rock type are formed from the altering of the physical, structure and components of the primary Rock (igneous rock). Because of limited time I will not be giving detail explanation to the other two rock type. Nevertheless, metamorphic rock is formed by the structural and physical change in existing rock under high temperature effect. Sometimes due to reactivation of passive volcanic conduit or through inflow of new magma into existing rock.
Basically, the science understanding of metamorphic rock formation is the contact and regional process. These two processes are define to be the main original transformation process that bring about metamorphic rock. The word metamorphic rock is from the process called metamorphism. The word meta means Heat and the word morphism means change. Change as a result of heat is what brings about metamorphic rock. Taking a look at rock cycle, we tend to appreciate metamorphic rock formation better.bthe effect of heat on both Igneous and sedimentary rock brings about metamorphic rock.
Example of metamorphic rock is marble which is formed from limestone, gneiss from granite rock.
Finally the sedimentary rock is formed from both metamorphic and igneous rock through breaking down and redepositing process. Sedimentary rock formation process is known as diagenesis process. This process Begin with the breaking down of existing rock through weathering process. Weathering here can be sponsored by water, chemical or biological agent. The weathering process bring about the breaking of rock into smaller sizes through scratching, heaving, foliatting, spurling among other process. Example of sedimentary rock is limestone and sandstone. Minerals are found in rock as they make up the rock composition.
As mining Engineer we locate this rock and extract the valuable components from them so such can be use for manufacturing. Starting the Mining begins with understanding the source of the materials we are going to mine and preparation for the mine through detail exploration and design. A valuable ore is that which is of sufficient size, good grade and minable

Understanding Flyrock control: Initiation Technique control

INTRODUCTION
Blast-induced fly rock generation occurs when rock fragments are thrown beyond the blast area, posing safety risks [1-3]. Causes include inadequate blast design, excessive explosive charge, or poor stemming. Control measures involve proper blast design, use of suitable explosives, adequate stemming, and implementing safety zones to minimize fly rock hazards. Preventing flyrock in blasting involves careful parameter design and analysis, including WipFrag analysis. Here are key steps:
1. Blast Design:
Ensure a well-designed blast pattern, considering rock properties and site conditions.
Optimize burden (distance between blastholes) and spacing (distance between rows of blastholes) based on rock type and desired fragmentation.
2. Explosive Selection:
Choose explosives that match the rock type and desired fragmentation.
Avoid excessive explosive charges that could lead to uncontrollable energy release.
3. Blasthole Design:
Use proper hole diameter and depth based on geological conditions.
Ensure uniform loading of explosive material in blastholes.
4. Stemming Material:

Employ adequate stemming (material placed on top of explosives) to confine energy and reduce flyrock.
Verify stemming height is appropriate for the blast.
5. WipFrag Analysis:

Use WipFrag analysis to assess fragmentation results post-blast.
Analyze particle size distribution to fine-tune blast parameters for optimal results.
6. Monitoring and Adjustments:

Continuously monitor and analyze blast performance.
Make adjustments based on monitoring data and feedback to improve future blasts.
7. Safety Zones:

Establish safety zones and clear blast areas to prevent injuries or damage in case of unexpected flyrock.
8. Training and Compliance:

Ensure personnel involved in blasting are well-trained and adhere to safety protocols.
Comply with local regulations and industry standards related to blasting operations.
By integrating these steps into the blasting process, you can mitigate the risk of flyrock and optimize fragmentation for better overall blasting efficiency.

Understanding Delay Timing and initiation approach for Flyrock control
This approach involves the use of primer placement or heavy charge Technique to prevent Flyrock generation.
The location of the primer is important, and as well as the status of the charge density along the hole column.
Firstly, having heavy charge close to the hole collar promote Flyrock generation as well as placing primer or booster closer to the surface.
A primer usually consists of a detonator and a boost containing initiation explosive [1]. A primer is often used to initiate a commercial explosive charge in a blasthole. Sometimes a detonator can be also used to directly ignite an explosive charge. Thus, detonator placement is the same thing as primer placement. The position of a primer in a blasthole plays an important role in rock fracture, fragmentation, and even ore recovery. Unfortunately, this important role has been not well understood so  far. As a consequence, an improper or even wrong primer position can often be found in present engineering blasting. The  
role of primer position in blasting can be found from various aspects, such as detonation energy, stress distribution, rock fragmentation, ore extraction, productivity, and safety [1, 2]
Implement delay timing in the blast sequence to control energy release and avoid simultaneous detonation, reducing flyrock risks.
The primer charge Initiation is the giver of wave front direction and the dictator of how well the blast will go. When the primer is located at the 
Fig.1 shows an explanation of how the initiation of blast using three placement point. Fig.2 shows the wave front movement after initiation.
Fig.1: Placement view
Fig.2 Reaction after initiation
Fig. 3 Resulting Blast
From Fig.1, If only one primer is placed in a borehole, the primer can be placed at different positions. In order to simplify the analysis, we take three cases to discuss: (a) middle primer, (b) bottom primer, and (c) top primer In the case of two primer position: (a) two primers at the one-fourth and three-fourths length of the charge; (b) two primers, one at the bottom and the other at the middle; and (c) two primers, one at the bottom and the other at the top. Among these cases, case (a) is the best, case (c) is the worst and should be avoided, and case (b) is in between [6-7]. 
Conclusion:
Flyrock Generation is one of the hazardous product of blasting. It occurs when the Explosive energy is excessive and when the charge energy is excess at the hole collar. This can be as a result of using insufficient stemming length, less confinement, to small Burden and poor initiation system.
Understanding the behavior of wave Generated during initiation had been explained in this article. The article provide insight from published material, and gives recommendation on primer Placement and charge rate along blast hole collar.
The rock resistance reduced along weak zone and less burden region, when the Explosive charge increases, the breaking factor increases. In a case where excess energy is available, it is use for the throwing of rock particles, thereby causing damage to structures, building, human, and equipments.


References
1. Dick, R. A., Fletcher, L. R., & D'Andrea, D. V. (1983). Explosives and blasting procedures manual (No. 8925). US Department of the Interior, Bureau of Mines.
2. Meyer, R., Köhler, J., & Homburg, A. (2008). Explosives. John Wiley & Sons.
3.Taiwo, B. O., Hosseini, S., Fissha, Y., Adebayo, B., Adesida, P. A., Famobuwa, V., ... & Akinlabi, A. A. (2023). Safe small scale mine blasting operation: An application of soft computing techniques to predict blast-induced flyrock distance.
4. Zhang, Z. X. (2014). Effect of double-primer placement on rock fracture and ore recovery. International Journal of Rock Mechanics and Mining Sciences, 71, 208-216.
6. Morante, E. A. (1987). A primer on placement testing. New Directions for Community Colleges, 1987(59), 55-63.

Thursday, September 21, 2023

MISFIRE: IT'S CAUSES, CONTROL, HANDLING AND PRECAUTIONS

MISFIRE: IT'S CONTROL, HANDLING AND PRECAUTIONS
BY GIANT MINER
A FRESH GRADUATE STUDENT OF FEDERAL UNIVERSITY OF TECHNOLOGY AKURE, MINING ENGINEERING DEPARTMENT.

Buttressing all known definitions, Misfire is the incomplete or partial failure of a Blasting charge to detonate/explode as planned.I like to retorate  that, Misfire is not limited to charge failure at initiation, but also extend to accidental detonation of Explosive and other Blasting accessories.
modified after Australia mine
 Since misfire is a very hazardous, every reasonable means available to site manager must be taken to avoid it occurrence. 
Let Begin the journey by understanding how to recognize misfire;
After firing, a proper checking of face and muckpile must be done to ensure that there is no indication of misfire. The occurrence of misfire during Blasting result into the following blast challenges:
1. Production of Noxious (NOx gas) fumes and toxic dust,
 2. Inadequate ground movement,
3. Poor fragmentation,
4. Unusual blast sounds or vibration rate,
 5. Flyrock,
 6. Evidence of undetonated Explosive in bench face or in muckpile,
These are the Conditions a Blasting Engineer can use during blast to at least predict if there is misfire or not.
The occurrence of misfire (now during Blasting) is a bit dangerous but the post blast effect is the main problem.
How can this six (6) signs occur and why does it occurred?
Site Misfire Indicator
Production of Noxious fumes and toxic gases  is as a result of alteration in the Explosive oxygen balance due to incomplete detonation. As we all know, oxygen balance is very important.
It dictate the type of gas, time and dust produce from Explosive at detonation.
Each Explosive has been tested at production and all gases reacting with oxygen had been balance in such a way that, at detonation, only those gases that are not poisonous are released.
Incomplete or partial detonation of Explosive led to negative oxygen balance.
This final cause the complete production of Noxious fumes which is hazardous. This is a good indicator to identifying misfire from the generated gases from Blasting.
As a Blasting Engineer, it clear that Blasting 100 charge holes will generate more ground movement than 70 charge holes. As the charge density will be different. The production of less ground movement from large charge can be use as indicator of blast misfire.
Also, poor fragmentation result from misfire. During Blasting, failure of two or more holes affect burden movement. It create more oversize and poor fragmentation.
 post Blasting inspection of misfire
 Inspection of misfire after Blasting is a dangerous task. In all circumstances this must be done in accordance with site rules.
Hazard exist not only from the remaining undetonated Explosive but also from the post blast environment. Due to the present of toxic fumes. It is possible that misfire Explosive  detonates after some time, therefore it is essential that adequate trained personnel should regularly check the muckpile and face during loading operation. Unchecked misfire is very dangerous, when such is load and transport to the processing plant can detonate during crushing.
From various study by different researchers, there are four initiation stimuli that cause explosion Detonation, this is place under this acronyms:
FISH:
F: Friction, 
I: Impact, 
S: shock and
H: heat
The present of any of this four result in the initiation of Explosive.
 Impact during crushing can initiate undetonated Explosive in Boulder socket. 
PROCEDURE ACTION ON SITE
The extent and nature of misfire must be determined after identification. This must be done as soon as possible after the misfire has been identified.
After check and clear: The *All Clear* sign should be given.
But if not yet clear the dangerous zone must be barecad
 How to deal with identified misfire
Now after we have done our post Blasting inspection and confirm the occurrence of misfire. These are some ways to deal with identified misfire undetonated charge hole;
 A. Removing stemming and re-priming: These are some precautions to observe when removing the stemming materi.
1. When the detonator is close to the undetonated Explosive, stemming removing with force should not be attempt,
2.In case of electric detonator the use of high velocity air should not be attempted as it can generate static charges sufficient to initiate electric detonator
3. Bulk Explosive can be washed out of misfired shotholes.
4. special care must be taken in removing the cartridge expecially where detonators are involved
5. Under no circumstances should Explosives or detonator be removed from a drill hole by pulling on the detonating cord or detonator lead
6. Use suitable extracting tools if required.
Some of the advantage of using high pressure water to flush Explosive during misfire include;
1. It desensitise any non water proof Explosive and dissolve high concentration of water soluble Explosive ingredients
 2. It overcome the mechanical  lock of stemming material comprising chippings
 Other ways of dealing with misfire is by
B.Drilling and firing relieving holes:
The objective of drilling the relieving hole is to blast Explosive we are unable to remove. Also, to disturb and displace the adjacent Explosive column. Also, to break up the rock mass in the region of misfire explosive to remove undetonated Explosive. 
Precautions to be taken in drilling the relieving holes include;
1. The hole burden and spacing depend on the sensitivity of the Explosive, the inclination of the misfire hole and the diameter of the hole. 
2.The relieving hole must be parallel to the misfire hole and be of the Same depth.  
Relighting of a misfire safety fuse is highly prohibited and dangerous
Also, We should give enough time before going to the misfire site.
This is because the  blast charge can reinitiate with time. More than one hour is not even enough!
Also, charging when raining is prohibited and can cause misfire.
 Check Explosive before use, Blasting environment must be inspected before selection of Explosive. 
Use of non water proof Explosive in water log environment is bad. Because, as it has been damaged earlier, the Explosive material in it might have been deteriorated or infected which can lead to fire breakage at ignition.
CONTRIBUTION FROM ENGR. MOSHEN JENA
AEL Explosive and Blasting Engineer (Zimbabwe)
 Indications of a misfire
- Inadequate ground movement. 
- Undisturbed ground
- Lack of fracturing 
- Poor fragmentation in areas of shot
- Evidence of undetonated explosives
- Hang-ups on face
- Unusual blast sound
When you see that there is inadequate ground movement. obviously there is expected movement and when you see it falling short of what you expectected then there are high chances that there is a misfire
 Causes of Misfires
Technical failure
- Wrong primer/assembly
- Circuit connection/coupling fault
- Detonator/poor explosive coupling
- Unsuitable explosives
- Carelessness – damage to initiation systems
- Wrong equipment, e.g. exploder
- Equipment failure
   -Exploder (not serviced)
    -Circuit tester
    -Firing cables
Site conditions
Weak ground/movement
Water presence
Geological discontinuities – cut offs
Product failure
Detonating cord – gaps
Detonators – Faulty fuse head/delay
Shock tube – moisture ingress/connection block
Fuses – Moisture; poor crimping; damage
Explosives – water ingress; static pressure; decoupling

 Misfire implications (Safety)
-Unexploded explosives and or Unexploded initiation systems
-Unstable/sensitised explosives
- Accidental detonation
       -Drilling into misfires (no drilling into sockets)
       -Struck by LHDs
       -Run over by trucks/wheels
       -In crushers
       -On feeders/screens
-Deposited onto dumps
-Taken off site in tippers

*Re-entry into a misfired area*
   - Where the blast fired successfully all gases and dust must be allowed to clear before re-entry or   inspection.
- Where multi-blast conditions exist the following guidelines must be adhered to:
  A re-entry of 30minutes must be allowed after blasting.
  Where the initiator of the blast failed a re-entry period of 30 minutes must be allowed where      pyrotechnic systems are used and 5 minutes for electronics.
*Treatment of misfires*
Early shift examination
  -Mark the hole (MF).
   -Return the fuse, shock tube or downlines wire into the hole.
   -Plug the hole with a socket plug.
   - Barricade the area off with appropriate warning signs.
During the shift 
    -Remove the socket plug.
   -If ANFEX or Emulsion, flush hole with water.
    -If Cartridges, pull out with an approved scraper and wash out with water.
Remove cartridges and detonators in separate containers to old explosives boxes for destruction in a designated area.
Misfire Safety
- Never attempt to pull a misfire with force out of a hole or muckpile.
 - In the case of shock tube, the tube snap and shoot and the column charge can go off.
-In the case where the detonator is damaged to the extend that the explosives charges in the detonator are exposed, friction especially with grid in the hole, could cause accidental initiation.
-Always remember that detonators in a misfired hole have been exposed to extreme external forces  during the blast. This means that a detonator retrieved from a misfired hole is not in the state of the original manufacturing and could be potentially more sensitive.
*Reporting Misfires*
- Potentially the most hazardous situation to have to deal with is misfires.
*AVOID!!!!!!!*
Correct blast designs
Appropriate initiation systems
Always report misfires to the responsible Miner.
Always report misfires to the relieving shift.
 in parting let me share with you incidents that have happened elsewhere
 Remember, and *An accident is a total loss, unless we learn something from it*  A crusher attended was severely injured when undetonated explosives in the ore were hit by the crusher jaws resulting in accidental detonation of explosives. The injured was rushed to the hospital but died upon admission at the referral hospital. An LHD driver was luck to survive, after he was hit by flyrock ejected from accidental detonation when his bucket hit primed explosives whilst lashing. He sustained serious injuries but was saved by the screens on the LHD operators cab.
 A drill rig operator died after drilling into a misfire. The drill steel hit the misfired explosive and it went off. The operator sustained multiple fractures and the rig was also written off. We have deliberately removed the names of the mines so that we get learn from the incident without worrying about who did it. Whilst trying to pull a shock tube that had been reverse primed, there was accidental detonation. This resulted in a violent explosion that ripped the face of the charging assistant and he died instantly. An excavator hit a misfires and the explosion damaged the bucket of the excavator and shattered all the windows.
GIANT MINER General Conclusion
 Since to prevent risk which is the father of accident is greatly important, proper steps must be taken to curb any occurrence of misfire during Blasting. In addition, Explosive is a very dangerous chemical substance, is as good as proper handling, if out of hand can be highly disastrous. Furthermore, Handle all Explosive related operations with great care and consideration. Following all needful precautions and safety policy. 
Nigeria as a case study been a country with many large scaleime, small scale and artisanal mine need wide teachings and training about misfire. Most local blasters have less knowledge about this and had fall victim of such incident.
Make your country mine sector great by making it safe.
Thanks
Love you all

Still your GIANT MINER

Tuesday, September 20, 2022

MY HERO'S JOURNEY

My Hero's Journey

I use to be one of those youth who believe that life is all about fulfilling *your* dream, doing everything to ensure your life is better, study hard on your own, take time to explore and give less time to things of God.  As a first class student of Federal University of Technology Akure during my 200level days, I always give all my time to reading, all I see is just life and me.
I want to be the best, I want the best of life, I want to change my family storyline,get out of poverty trend and be a successful individual. *All of my heart desires were so cool and good but the factor of God first wasn't in my tent*
I built all my goals and occupied all the space, all I want is to live a successful life without the successful Creator Himself. I want Joy, but never submit to the joy Giver.
My fellow Corp members, I desire all good things just like you do right now,
I want stable finance, 
Good job
Happy home
Sufficient time with my work
I don't want to pray
I just believe the Bible is for some pastor kind of persons.
*But I was wrong!*
I thought I can make it by my strength but I was wrong!
I failed in my second semester year two.
What I was working to build was brought down once.
The first class grade
The finance
All left me despite the fact that I am committed to them, working hard and strongly.
But I found Him
My second phase of life begin after I found the truth about who Jesus Christ is and what had been paid and made available for me.
I was called out of darkness (Selfish mind set) into Christ. I heard about His birth, I was educated about His death on the cross, why He have to died on the cross and how. I was opened up to the perfect work of is resurrection and the implication.
I believe him, I recieved Him 
I welcomed Him in
I gave Him all
He restored back all to me and promised me all instead.
The greatest of all was that everything I always want to live outside of Him for, was given to me as an inheritance.
I get the best results, get a good job, have connections that network international relation with me.
Now I realize that all you want is in what you have. All you want is in Christ. When you Have Him, you have all.

Dear Friend, is your case like mine right now?
How to get the best of life?
How to stop living in sin, how to recieve eternal life that will give life to every dead works in your life?
Have you said yes to Jesus many times and still you can't see any changes?
Is sin still taking over you?

All you need is to surrender all..

Let go of all you hold on to...
Let Christ be at the center of all.....
I was once like that also, but I found Him, 
He Gave me a new heart, a new spirit and His Holy spirit according to His promise in Ezekiel 36:26-27.

"I will give you a new heart and put a new spirit in you; I will remove from you your heart of stone and give you a heart of flesh. And I will put my Spirit in you and move you to follow my decrees and be careful to keep my laws"

Now I have Joy overflow...

Make this decision now
Take this pray with your heart open and believe in your heart unto righteousness and Confess with your mouth now into salvation.

*Prayer*

Father, I am sorry for everything, I acknowledge that I indeed was wrong about life, I repent of all my sinful ways and thoughts.
Lord forgive me by your Mercy. I turn away from darkness into you marvelous light right now, because I believe in Your son Jesus, in who you have paid for all my debts. I receive eternal life now. Thank you Father for saving me.
Amen

Congratulations
If you have make this decision:
Please message me 
I have a good news for you (I like to know you and keep praying with you)
+2347031018600

Friday, June 24, 2022

AN OVERVIEW OF SURFACE MINE MAINTENANCE

THREE MAINTENANCE APPROACH FOR NIGERIA MINE IMPROVEMENT
INTRODUCTION
Maintenance of mine operation is important because of the need to monitor the earth response, see to the perfect working of mine plan and mine design.
Getting the Mineral extracted from the earth crust is the major reason for mining, but getting it in a safe and profitable means is the major goal.
Surface mining methods involved the extraction of shallow depth Mineral deposit through the complete removal of the overburden materials.
Developing the ore site and extracting the ore deposit using any of the previous explained methods follows stripping operation.
As the mining operation advances, the earth stress state and other redistributed forces impact the excavated region.
This will definitely require a preventative maintenance.
Below are some of the maintenance approach to ensuring a sustainable mining operation;
1. Maintenance of mine water: I understand from personal work study that Nigeria operates majorly surface mines, mostly quarrying and open pit methods. The creation of open cavity after mining provide a basin for water gathering. Such water if not properly maintained can accommodate dangerous animals, become dead trap for community people, support leaching at overflowing and also damage landscape through support flood action. 
Reclaiming mine out area with  treated mine waste or stripped materials will enhance the safety of abandoned mine area.
Major mine operations find less interest in reclamation process, abandoning the land after removing the content (mineral) is what most Company aimed at! 
This shouldn't be the case, the need for land coverage after mining is a good way of restoring the land to a useful state, Which makes it good for other purposes.
2. Mine design monitoring and adjustment: Most mine lack the ability to design and to implement the mine layout, this had led to untimely closure of quarries and mine in Nigeria and Ll around the world (especially Artisan mines and small scale mines). Putting proper design in place to account for the ground condition and current status of the environment is a good means of mine maintenance. Going by the saying that "Prevention is better than cure" preventing mine accident such as land slide, slope failure, misfire, flyrock among others is best achieved by proper design and implementation.
Mining Engineers and safety Engineers need to maintain the site design and supervise the implementation.
Below are some ways I discovered from Academia Research work and experience to maintain a typical mine slope:
1. Proper selection of bench height to avoid plan and wedge failure and other failure type,
2. Frequent checking of slope discountinuity property to avoid unnecessary movement and dislocation,
3. Proper selection of equipment to ensure good and safe working condition,
4. Proper control of mine water to avoid toe creeping and swelling,
5. Proper mine drainage system to avoid total closure or high dewatering cost,
6. Proper blast design and explosive usage to avoid blast illness ad over break,
7. Proper and accurate excavation, and
8. Frequent monitoring of Ground water and mine hydrological condition.
Maintenance of mine plan is vital to avoid unnecessary failure of mine slope, and mine closure
3.Mine Equipment maintenance: Though most Quarry operations in Nigeria and local mines in the world operate at small scale level with high level of manually perform operations. Yet, the use of equipment like excavator, payloader, crusher and the likes is inevitable. In order to ensure smooth operation in the mine, and to have a sustainable mine and environment, proper maintenance of mine equipment is very crucial. Checking from the perspective of generation of ozone layer depleting gases from poorly service heavy duty mine equipment,
Most mine lack the equipment preventive maintenance system. This result into poor production and contribution to unsustainable environment. Providing good preventive maintenance of mine equipment will not only improve mine productivity but also support sustainable environment.
Below are some suggested ways by which mine equipment can be maintained;
1. Daily check-up of equipment before work,
2. Periodic preventive maintenance,
3. Use of good condition fuel oil,
4. Proper and quick response of mine management to driver/maintenance team complaint,
5. Appointment of qualified mechanical engineer to ensure good equipment working condition,
6. Avoiding mine equipment over usage,
7. Avoid 24hours truck working without break,
8. Avoid using trucks beyond specified capacity, and many more
Conclusion
Starting the mine is not basically the problem but sustainable mine is usually challenging. Extraction of materials from the earth crust is important to human sustainability, likewise the safety of the environment and life's working in the mine and living around the mine. Maintenance of equipment, maintenance of the mine slope and operation safety is high imperative and crucial.
This will not only dictates the mine productivity but also it profitability.
Most mine get shut down quickly by surface and underground water simple because of lack of proper maintenance. Designing  good drainage and planing good water control system willo a long way to mine sustainability. Safety case when it comes to blasting is also another need to prepare for.
Blasting Operation demands full safety plan and preparation. Post blasting plan involves putting all things in place to ensure safe movement of Explosive material from magazine to the mine and proper distribution of material for each hole charging. Maintaining the magazine to avoid unwanted initiation or problem like self detonation under unfavorable heat conditions. The magazine maintenance must be such that it suit the storage condition of the explosive materials.
On site maintenance involves putting all needful in place to ensure safe use of Explosive and to avoid misfire and poor blast result. Blast ills such as ground vibration, flyrock, airblast, dust among others needs to be account for when planning the blast.
Finally, I support the safety of all mine operation, this will give hope to us and to our generation to come.
We mine to safe life and not to destroy it.
Thanks for reading
Writer
Taiwo Blessing Olamide
Giant Miner
Prospective student
Recommend me for your Research assistant
Looking forward to 
Join professor Research work 
Research interest: Rock excavation and Rick mechanics

Tuesday, June 14, 2022

Review of the Effect of Blast initiation Delay Timing on Blasting fragmentation

Review of the Effect of Blast initiation Delay Timing on Blasting fragmentation
By Taiwo Blessing Olamide 
GIANT MINER
INTRODUCTION
 Do you know that;
Explosive energy is higher when the shock energy supply for the initiation is high and accurate.
Also that, most mining operations uses inaccurate blast time and initiation timing. Two things affect Blasting efficiency appart from the blast parameters and rock properties.
 These are;
1. the initiation system and
2. the initiation approach. 
This article give a brief review on Professor Takis Katsabanis and Nikolaos Gkikizas-Lamptopoupos work.
Professor Takis is an explosive Engineer, lecturer in Queen's university Ontario, Canada.
Prof Takis of Queen's university Canada with one of His master's student Nicholaos Gkikizas worked on a project relating to this in 2016. The Thesis focus on examination of the effect of Time delay on fragmentation.
 The project was effectively experiments in the university Rock Excavation Laboratory under the full supervision of Prof. Takis Katsabanis. 
 The work involved two series of experiments.
First series involved tests on small scale grout and granite blocks to determine the moment of burden detachment. The instrument use for these experiments consist but not limited to strain gauge and Piezoelectric sensors, high speed camera. The result of the first series experiment shows that the time of rock particle detachment for the thesis set up is between 300 and 600 micro second. Meaning, as the Explosive shock wave fractures the rock and the gas energy perf
The major aim of blasting is to detach the rock into handable sizes, the important of studying the detachment time as indicated by Prof. Takis student was to ensure that the burden movement timing is accurately design between inter row and intra row drill holes. Each detachment time affect the fragmentation efficiency of the blasting. The major approach adopted in the thesis was to optimize the charge timing and get the detachment time right for efficient fragmentation.
The second series of the project involved blasting of a 2m high granite bench and it's purpose was to determine the hole to hole delay that will provide optimum fragmentation. Nicholaos Gkikizas worked reflect on this objective by adopting image analysis software for fragmentation efficiency examine for each delay observed. Also, he examine the produce vibration from the blast and also record the blast with high speed cameras such as Olympic i-SPEED 2 camera.
The result of the second series suggest that fragmentation was optimum when delays between 4-6 Ms were used for the experiment set up. It was also found that the moment at which gases first appear to be venting from the face was consistently around 6ms after detonation. In one of my blog article had take time to explain the concept of shock energy and gas energy release sequence during detonation. Nikolaos in his thesis indicated that the timing difference between the initiation period and gas explosion period was 6ms, this shows that from the initiation point to 5:59ms, the fracturing process was fully taking place. The crushing zone process, the tensile slabing process and the shearing.
The Research work of Prof. Takis Katsabanis student also shows that the mean fragmentation size changes with time delay. The experiment shows that the fragmentation mean size was higher at low delay timing and higher at timing greater than 8ms. Which shows that from 2ms to 8ms, the X50 is low with 8ms been the optimum delay second.
Nikolaos work also revealed that the delay timing affects the vibration level for the experiment conducted. Ground vibration is one of the most serious blast illness after flyrock. The energy distribution from explosive result into displacement of rock and earth crust material at a define frequency level. Such is also depending on the Maximum instantaneous charge per initiation. Prof. Takis student also shows that the shorter the delay timing the higher the possibility for overlaps (constructive wave interference) 6-8ms delay produces separation of pulses as indicated by the result from the vibration results.

Conclusion
This work had shown that the efficiency of blast production and safety also depends on the charge initiation and the timing allocation.
The productiveness of blasting Operation is the main aim and Target of blasting. Ensuring safety and profitability is also a great task. 
To ensure this is fulfil, there is a need for proper design and optimization of blast timing and design to achieve this great task.




Mining and safety is our main focus
Giant Miner is committed to safe mining and campaign against poor and unsafe mining. First in Nigeria and then to the whole world.
Share and comment
Reference
https://qspace.library.queensu.ca/handle/1974/15321

Stay Safe from COVID19 and stay Secured, Corona Virus is Real!!!

  Chronological Development of Fragmentation Analysis Methods Over the decades, fragmentation analysis models have evolved significantly, dr...

Learn on this